
www.manaraa.com

Secure Locking Protocols forMultilevel Database ManagementSystemsSushil Jajodia1, Luigi V. Mancini2 and Indrajit Ray11George Mason University,Center for Secure Information Systems and Information andSoftware Systems Engineering Department, Fairfax, VA22030{4444, USA. fjajodia,irayg@isse.gmu.edu2Dipartimento di Scienze dell'InformazioneUniversit�a La Sapienza di Roma, Italy. mancini@dsi.uniroma1.it
AbstractWhile there are several secure concurrency control protocols for multilevel database managementsystems, most of them employ timestamp ordering or multiple versions of data or a hybrid protocolthat utilizes both. The only known secure locking protocol that maintains single version data andcan guarantee serializability, immediately aborts a higher level transaction whenever any of itslocks at the lower levels is broken.In this paper, we o�er two secure locking protocols. The �rst protocol produces pairwise seri-alizable histories. The second protocol generates serializable histories if the security levels form atotal order; however, in general, when the security levels form a partial order, it generates MLS-serializable histories, a notion of correctness that we introduce. The proposed protocols maintainssingle version data and require only the lock manager to be trusted; a higher level transactioncan continue its execution and commit successfully even if some of its locks at the lower levelsare broken. Rather than immediately aborting the high transaction when any of its low lock isbroken, our protocols wait until such time as executing a high level action will actually createa cycle in the serialization graph, not merely whenever there is the possibility of a cycle beingformed. These protocols work by a method of \painting" certain transactions and the data itemsaccessed by these transactions and by detecting a cycle at the moment it is imminent in theserialization graph. KeywordsDatabase management, transaction processing, concurrency control, serializability, locking, mul-tilevel security

www.manaraa.com

2 Secure Locking Protocols for Multilevel Database Management Systems1 INTRODUCTIONThe problem of secure concurrency control makes transaction management in multilevel secure(MLS) database systems more complex than in traditional databases. In MLS databases, thedata and user processes are classi�ed into di�erent security levels, and access to a data item bya process is governed by the following mandatory access rules: A transaction T can write to adata item x only if x is at the same security level as that of T; T can read x only if x is ata security level lower than or equal to that of T. Moreover, MLS databases must also preventindirect information leakage through covert channels. The latter imposes serious restrictions onconventional concurrency control algorithms: A lower level transaction cannot be prevented fromaccessing a data item because a higher level transaction is already accessing it in a conictingmode because doing so opens up a covert channel between the high and low security classes.�Secure concurrency control has been studied by researchers in the context of multilevel databasesystems. Reed and Kanodia (1979) use the notions of eventcounts and sequencers to solve thesecure readers-writers problem. Lamport (1977) and Schaefer (1974) o�er a similar solution usingversion numbers. However, as shown in (Ammann & Jajodia 1992), none of these solutions gen-erate serializable histories when applied to transactions. Moreover, these solutions su�er from theproblem of starvation, i.e., transactions that are reading lower level data items may be subjectto inde�nite delays.Other algorithms have been proposed that employ timestamp ordering or multiversion data orboth. Ammann & Jajodia (1992) give two timestamp based algorithms on single version data thatyield serializable histories. Keefe & Tsai (1990) propose a scheduler based on multiple versionsof data and a priority queue of transactions according to their access classes. A third work byAmmann, Jaeckle & Jajodia (1995) proposes a concurrency control protocol using two snapshotsof the database in addition to the most recently committed version, i.e. three copies of thedatabase. This protocol can be naturally implemented using timestamp ordering to control thetransactions executing at a given security level, although other scheduling algorithms can alsobe used. Other works, including Jajodia & Kogan (1990), Ammann & Jajodia (1994), Kang &Keefe (1995), and Ammann, Jajodia & Frankl (1996) are based on the subtle properties of theunderlying database system architecture.Although locking protocols have been found to be not only easy to implement but also e�cientfor transaction processing in conventional database systems, there are not many lock based secureconcurrency control protocols. An exception is the set of orange locking protocols (McDermott& Jajodia 1993) that provide covert channel free concurrency control of database transactions.These protocols do not use multiversion data and can be implemented using single level untrustedschedulers. However, as we show here, except for the optimistic orange locking protocol with theassumption that a high transaction is always aborted whenever its low lock is broken, the othervariations cannot guarantee the serializability of multilevel histories.In this paper, we propose two locking protocols for secure concurrency control that maintainsingle version data and require only the lock manager to be trusted.y Rather than immediatelyaborting the high transaction when its low lock is broken, these algorithms wait until the last�Throughout this paper, we use the terms high and low to refer to two security levels such thatthe former is strictly higher than the latter in the partial order.yThe whole body of a standard Lock Manager, written with all the requisite defensive program-ming, exception handlers, optimizations, deadlock detectors, etc. comes to about a thousand linesof actual code (see for example (Gray & Reuter 1993)) and, therefore, is easily veri�able.

www.manaraa.com

Security Model and Motivation for the coloring scheme 3possible moment; they wait until such time as executing a high level action will actually createa cycle in the serialization graph and not whenever there is the possibility of a cycle beingformed. This is achieved by a method of \painting" certain transactions and the data items theyaccess and by detecting a cycle at the moment it is imminent in the serialization graph. The �rstalgorithm guarantee pairwise serializability, a notion of correctness introduced in (Jajodia & Atluri1992). The second algorithm guarantees serializability when the security levels of transactions anddata items form a total order. As we discuss below, if the security levels form a partial order,such delayed abort may not be always possible without opening up a covert channel betweentransactions at incomparable levels. We present a new notion of correctness, MLS-serializability,and show that the second protocol guarantees MLS-serializable histories for partial orders.This paper is organized as follows. Section 2 introduces the basic de�nitions and gives an exam-ple to motivate the coloring schemes we use. In section 3, we give our �rst protocol that generatespairwise serializability. In section 4, we present our notion of MLS-serializability, followed by aprotocol that yields MLS-serializability. The rest of the paper deals with the second protocol.Section 5 discusses some issues relevant to its implementation. In section 6, we compare it withdi�erent orange locking algorithms. Section 7 gives a formal proof of its correctness. Finallysection 8 concludes the paper.2 SECURITY MODEL AND MOTIVATION FOR THECOLORING SCHEMEThe multilevel secure system consists of a set D of data items; a set T of transactions (subjects)which manipulate these data items; and a partial order S of security levels, whose elements areordered by the dominance relation �. If two security levels si and sj are ordered such that si �sj , then sj dominates si. A security level si is said to be strictly dominated by a security level sj ,denoted as si � sj , if si � sj and i 6= j. Each data item from the set D and every transactionfrom the set T is assigned a �xed security level by a mapping L.In order for a transaction Ti to access a data item x, the following two necessary conditionsmust be satis�ed:1. Ti is allowed a read access to data item x only if L(x) � L(Ti).2. Ti is allowed a write access to the data item x only if L(x) = L(Ti).Note that the second constraint is the restricted version of the ?{property which allows trans-actions to write to higher levels (Denning 1982); the restricted version is desirable in databasesfor integrity reasons.The simplest locking protocol on single version data that guarantees serializable histories andis secure at the same time, aborts a higher level transaction whenever one of the transaction'slower level read locks is broken by a lower level transaction. However, this simple algorithm istoo pessimistic; it rejects even simple serializable histories like the one shown in �gure 1 wherethe only dependency is T1 ! T2.The reason why the simplest algorithm is too pessimistic is because the algorithm assumes thatwhenever there is a possibility of violation of the two-phase locking rule, a cycle will occur in theserialization graph. However, as �gure 1 shows this is not always the case.

www.manaraa.com

4 Secure Locking Protocols for Multilevel Database Management SystemsHigh T1: r1[x] w1[z] c1Low T2 : w2[x] c2Figure 1 A serializable history rejected by the simplest secure algorithm
3 AN ALGORITHM THAT GUARANTEES PAIRWISESERIALIZABILITYThe important observation about the history in �gure 1 in particular, and histories in general, inwhich the low level read lock of a high level transaction T1 is broken by a low level transactionT2, is that T2 and any other transaction Tk that reads data items that are written by T2 orwrites data items that are read by T2, must serialize after T1. This observation motivates usto present a simple algorithm based on a scheme of coloring transactions like T2 and Tk anddata items they access with an after-T1 color (signifying that they must serialize after T1).The data items are colored with after-T1 color in order to pass on the transitive dependency tosubsequent transactions. If T1 ever reads or writes an after-T1 data item, it indicates a cyclein the serialization graph and consequently T1 is aborted at that time. This algorithm uses twocolors for transactions - colorless and an \after" color - and three colors for data items - colorless,an \after" color and a \read-after" color. A transaction Ti becomes after-Tj if Ti is paintedwith an after-Tj color; a data item x becomes after-Ti or read-after-Ti if it is painted with anafter-Ti or read-after-Ti color respectively. Moreover, a transaction or a data item can be paintedwith more than one color. Suppose a transaction Ti is painted with colors after-Tj , after-Tk andafter-Tl. Then the transaction is considered to have turned after-Tj , after-Tk and after-Tl. Samefor data items. The algorithm is summarized below:1. Initially transactions and data items are painted colorless.2. If a transaction Tj writes a data item x on which a higher level transaction Ti has a read lock,Tj becomes an after-Ti transaction and x an after-Ti data item.3. If an after-Ti transaction Tj reads a data item z, z becomes a read-after-Ti data item; if Tjwrites a data item y, y becomes an after-Ti data item.4. Any transaction Tk that reads an after-Ti data item becomes after-Ti. If transaction Tk readsa read-after-Ti data item, there is no change in color of either the transaction or the dataitem.5. Any transaction Tk that writes a read-after-Ti data item or an after-Ti data item becomesafter-Ti.6. Data items which have been read or written by Tj before Tj turned after-Ti, also turn read-after-Ti or after-Ti, respectively.7. If at any point Ti tries to read or write a data item that is after-Ti, Ti is aborted.

www.manaraa.com

MLS-serializibility and An algorithm that guarantees MLS-serializibility 5High T1 : r1[x] r1[z] c1Mid T2 : r2[y] w2[x] c2Low T3 : w3[y] w3[z] c3Figure 2 A nonserializable history accepted by simple coloring scheme
It is easy to see that this algorithm guarantees pairwise serializability, but not serializability.Pair-wise serializability (Jajodia & Atluri 1992) requires that for any pair of security levels thesub-history restricted to those levels is serializable. We omit a proof due to lack of space.To see why this algorithm does not guarantee serializability, consider the history shown in�gure 2 where Low � Mid � High. Although this history is non-serializable, the coloring schemejust described does not reject this history. T3 breaks the low read lock of T2 �rst and is coloredafter-T2; y is also colored after-T2 at this time. T3 then writes z; thus z is colored after-T2. T3then commits. When T2 breaks the low read lock of T1, T2 is colored after-T1, and both x andy are colored after-T1. Thus at this time we have the two edges T2 ! T3 and T1 ! T2. Byserialization theory we should have the path T1 ! T2 ! T3. To do this however, T2 has to passon the after-T1 color from itself to all transactions which are after-T2 - viz., T3 in this case. Thealgorithm just presented does not guarantee the transitivity of the \after" color: It fails to colorthe data item z after-T1. As a result the cycle in the history cannot be detected by the algorithm.To overcome this di�culty, our second protocol uses a third color, the \before" color, to painttransactions T1 and T2, to indicate that they are before T3 in the serialization order. ConsequentlyT1 will know that T3 is after-T1 (we will paint T1 as before-T3); if at any time T1 becomes after-T3, T1 is aborted.In the rest of this paper, we deal only with the second protocol.4 MLS-SERIALIZIBILITY AND AN ALGORITHM THATGUARANTEES MLS-SERIALIZIBILITYBefore we give our second protocol, we introduce a new correctness criterion called MLS-serializability.De�nition 1 An history H is MLS-serializable if for any transaction Ti, the serialization graphSG(H) does not contain a cycle such that Ti is in the cycle and all other transactions in the cycleare at levels dominated by the level of Ti.Clearly if we assume that the security levels form a total order, then any MLS-serializable historyis also serializable. We will give an example below to show that MLS-serializability is weaker than

www.manaraa.com

6 Secure Locking Protocols for Multilevel Database Management Systemsserializability in general. MLS-serializability seems useful if we do not allow database integrityconstraints to span security levels.We now describe our secure locking protocol with the coloring algorithm. We require a trans-action to obtain a lock on a data item in the appropriate mode from the lock manager beforeaccessing the data item. The locking used by a transaction is strict on all data items that are atthe same level as that of the transaction; i.e., a transaction Ti releases all its locks on data items atsecurity level L(Ti) together, when Ti terminates (see Bernstein, Hadzilacos & Goodman 1987).When reading a data item x at a lower level, a transaction Ti must acquire a read lock on x.However, if a transaction Tj requests a write lock on x while Ti has a read lock on x, the lockmanager takes the read lock away from Ti and grants a write lock to Tj immediately.Rather than notifying Ti to abort at this point, the lock manager simply starts to keep trackof all the data items y that are accessed by Tj . To accomplish this, the lock manager \paints"transaction Ti with a before-Tj color, transaction Tj with an after-Ti color, any data item z readby Tj with a read-after-Ti color, and any data item y written by Tj with an after-Ti color. Theafter color of transaction Tj is propagated in an iterative manner to any transaction that followsTj and executes an operation that conicts directly or indirectly with some operation of Tj ; thebefore color of transaction Ti is propagated to all active transactions that are before Ti in theserialization order, in a recursive manner. The following rules are used by the lock manager forcoloring transactions after-Ti, before-Tj and data items read-after-Ti or after-Ti:1. If a transaction Tj writes a data item x on which a higher level transaction Ti has a readlock, Ti is painted with the color before-Tj and Tj is painted with the color after-Ti. Thedata item x is also painted with after-Ti.2. If a transaction Tj that is colored after-Ti reads a data item z, z is painted read-after-Ti; ifTj writes a data item y, y is painted after-Ti.3. When Tj turns after-Ti, Tj inherits all the after-colors of Ti, i.e., if Ti is painted with (say)some after-Tm color, then Tj is also painted with the after-Tm color.4. When Ti turns before-Tj , Ti inherits all the before-colors of Tj . Further the before-colors ofTj are recursively propagated from Ti to any transaction Tk that is already colored before-Ti,from Tk to transactions Tl that are colored before-Tk and so on.5. Any transaction Tk that reads an after-Ti data item becomes after-Ti. If Tk reads a read-after-Ti data item, Tk does not change color.6. Any transaction Tk that writes either a read-after-Ti data item or an after-Ti data item,becomes after-Ti.7. Once a transaction Tk turns after-Ti, any data items which have been read or written by Tkbefore it turned after-Ti, turns read-after-Ti or after-Ti, respectively.If at any point a transaction Ti is colored after-Tk and before-Tk for some transaction Tk, itsigni�es a cycle in the serialization graph. The lock manager at this point selects a suitable victimTj (i may equal j) on the cycle such that L(Tj) dominates the level of every other transactionsin the cycle and informs Tj to abort thus removing the cycle from the history. If there doesnot exist such a Tj , the lock manager does not take any action. (Note that in this case the lockmanager allows the cycle to remain in the history which nonetheless will still be MLS-serializable.We discuss this further below.)

www.manaraa.com

MLS-serializibility and An algorithm that guarantees MLS-serializibility 7Figure 3 gives the algorithm for the Trusted Lock Manager module. The Lock Manager isresponsible for coloring the data items and the transactions in an appropriate manner. Thecoloring is done at the time a transactions requests a lock on some data item.The algorithm works as follows: When a transaction requests a lock to the Lock Manager,the latter �rst veri�es if the lock request violates the security policy, i.e., a write lock cannotbe requested on a data item x by a transaction Tj if L(Tj) 6= L(x) and a read lock cannot berequested by a transaction Tj on data item y if L(Tj) � L(y). Once the Lock Manager is satis�edthat the lock request does not violate the security policy, the Lock Manager tries to satisfy thelock request.If the requested lock by Tj on x is a write lock, the lock manager �rst checks if there is a readlock already acquired on x by some Ti such that L(Tj) � L(Ti). If there is such a read lockon x, the lock manager paints Tj with an after-Ti color by inserting transaction Ti in After-Set(Tj). During this time if the data item x is colored by some after-Tm or read-after-Tn colors,Tj acquires those colors of x too (i.e. the transactions Tm, Tn are entered in After-Set(Tj)). Nextthe recursive procedure Propagate-Before-Color() is invoked with the parameters Tj and Tj . Theprocedure starts by marking Tj as visited and then checks for transactions in After-Set(Tj). Ti isone such transaction in the After-Set(Tj). Ti is not yet marked as visited; as a result the procedurerecursively calls itself with parameter Ti and Tj . During this pass Ti is marked as visited. Forsimplicity let us assume that After-Set(Ti) is empty and Ti is active. Then Before-Set(Ti) isset to the union of Before-Set(Ti) and Before-Set(Tj). Thus Ti is colored before-Tj by insertingTj in the Before-Set(Ti). If there are other transactions in Before-Set(Tj) those transactions getinserted in Before-Set(Ti).If After-Set(Ti) is not empty, for all active Tk 2 After-Set(Ti), the transactions in Before-Set(Tj) are inserted in Before-Set(Tk). Then this process is repeated for transactions in theAfter-Set(Tk) and so on till there are no more active transactions to be considered. The intuitivereason behind this recursive before color propagation is that if Tj becomes after some activetransaction Tk, Tk should be colored before-Tj , even if there is no direct dependency betweenTj and Tk.Once this \before" color propagation is over the Lock Manager checks if for any of the trans-actions Tk (including Tj) whose Before-Set was just updated, the transaction Tk is colored bothbefore-Tl as well as after-Tl for some Tl. If this is the case it implies that this transaction Tkis involved in a cycle in the serialization graph and the Lock Manager aborts Tk. Note that thischeck for transaction Tk is performed from the highest security level going down; this ensuresthat the highest transaction involved in a cycle is aborted. This strategy ensures that if a highlevel transaction and a low level transaction are involved in a cycle, the low level transaction isnever aborted because of the high level transaction. Sacri�cing the high level transaction preventspotential covert channels.If Tj is not aborted by the above step, the Lock Manager updates the color of the data item xwith the after colors of Tj . It also updates the after colors of all data items Tj has written andthe read-after colors of all data items Tj has read, with the after colors of Tj . Finally it grantsthe write lock to Tj .If there is no read lock on x by some higher level Ti, the Lock Manager �nds out if there isany conicting lock on x by a transaction Tk at the same level as Tj . If there are none, the writelock should be granted. Before actually granting the lock, the Lock Manager updates the aftercolors of Tj with the after color or read-after color of x. This is because the data item x mayalready be after-Tk or read-after-Tk for some Tk and the transaction Tj by writing x, gets coloredafter-Tk. If Tj does get colored after-Tk (owing to accessing a colored x), the transaction Tk gets

www.manaraa.com

8 Secure Locking Protocols for Multilevel Database Management SystemsTrustedLockManager()% This algorithm uses three colors for data items: after, read-after and colorless and three colors% for transactions: before, after and colorless.% The Lock Manager maintains two sets of colors for each Tj - the After-Set(Tj)% and the Before-Set(Tj). Every transaction Tj is colored before-Tj when it is submitted.% Ti 2 After-Set(Tj) implies Tj is colored after-Ti. Similar for Ti 2 Before-Set(Tj).% The lock manager also maintains two sets of colors for each data item x -% the After-Color(x) and Read-After-Color(x). Tj 2 After-Color(x) implies x% is colored after-Tj . Similar for Read-After-Color(x).procedure Propagate-Before-Color(Tm,Tn)% This procedure recursively propagates the before colors of Tn% to any active Tl 2 After-Set(Tm)beginmark Tm as visited;for all Tk 2 After-Set(Tm)if Tk is not marked as visited, thenPropagate-Before-Color(Tk ,Tn)if Tk is active thenBefore-Set(Tk) Before-Set(Tk) [Before-Set(Tn)endforendrepeatreceive (TM,Tj ,op,x);case op doWrite-Lock:If L(TM)6=L(Tj)6=L(x) thensend (TM,Tj ,LockIllegal);Read-LockIf L(TM)6=L(Tj) OR L(Tj)�L(x)send (TM,Tj ,LockIllegal);endcasecase op doWrite-Lock:if (there is a read lock that is already set on x by some Ti) and L(Tj)�L(Ti) thenAfter-Set(Tj) After-Set(Tj) [After-Color(x) [Read-After-Color(x) [Ti;Propagate-Before-Color(Tj ,Tj);Let Sbefore be the set of transactions whose before colors have beenupdated in the previous step, sorted in descending security levelfor each Tk 2 fSbefore [Tjg doif (After-Set(Tk) \ Before-Set(Tk) 6= ;) ^ (8 Tn 2 ffSbefore [Tjg-Tkg, L(Tn) � L(Tk)) thenabort Tk ;remove Tk from all the color sets ;if Tk = Tj then send(TM,Tj -aborted); return endif ;endif ;After-Color(x) After-Color(x) [After-Set(Tj) ;for all the data items y which have been read previously by Tj doRead-After-Color(y) Read-After-Color(y) [After-Set(Tj);for all the data items y which have been written previously by Tj doAfter-Color(y) After-Color(y) [After-Set(Tj);Figure 3 Trusted Lock Manager Module (continued)

www.manaraa.com

MLS-serializibility and An algorithm that guarantees MLS-serializibility 9setLock(Tj ,x,Write-Lock); send(TM,Tj ,LockOK)elseif (there is no conicting lock already set on x) thenOld-Set(Tj) After-Set(Tj)After-Set(Tj) After-Set(Tj) [After-Color(x) [Read-After-Color(x) ;if After-Set(Tj) 6= Old-Set(Tj) thenPropagate-Before-Color(Tj ,Tj)Let Sbefore be the set of transactions whose before colors have beenupdated in the previous step, sorted in descending security levelsfor each Tk 2 fSbefore [Tjg doif (After-Set(Tk) \ Before-Set(Tk) 6= ;) ^ (8 Tn 2 ffSbefore [Tjg-Tkg, L(Tn) � L(Tk)) thenabort Tk ;remove Tk from all the color sets ;if Tk = Tj then send(TM,Tj -aborted)returnendif ;endif ;After-Color(x) After-Color(x) [After-Set(Tj) ;for all the data items y which have been read previously by Tj doRead-After-Color(y) Read-After-Color(y) [After-Set(Tj) ;for all the data items y which have been written previously by Tj doAfter-Color(y) After-Color(y) [After-Set(Tj) ;setLock(Tj ,x,Write-Lock); send(TM,Tj ,LockOK)else delay(Tj);Read-Lock:if there is no conicting locks already set on x thenOld-Set(Tj) After-Set(Tj)After-Set(Tj) After-Set(Tj) [After-Color(x);if After-Set(Tj) 6= Old-Set(Tj) thenPropagate-Before-Color(Tj ,Tj)Let Sbefore be the set of transactions whose before colors have beenupdated in the previous step, sorted in descending security levelsfor each Tk 2 fSbefore [Tjg doif (After-Set(Tk) \ Before-Set(Tk) 6= ;) ^ (8 Tn 2 ffSbefore [Tjg-Tkg, L(Tn) � L(Tk)) thenabort Tk ;remove Tk from all the color sets ;if Tk = Tj then send(TM,Tj -aborted)returnendif;endif;Read-After-Color(x) Read-After-Color(x) [After-Set(Tj);for all the data items y which have been read previously by Tj doRead-After-Color(y) Read-After-Color(y) [After-Set(Tj);for all the data items y which have been written previously by Tj doAfter-Color(y) After-Color(y) [After-Set(Tj);setLock(Tj ,x,Read-Lock); send(TM,Tj ,LockOK)else delay(Tj);Unlock:release(Tj ,x); send(TM,Tj ,UnlockOK);awake transactions that are no more conicting, if any;endcaseforever Figure 3 Trusted Lock Manager Module

www.manaraa.com

10 Secure Locking Protocols for Multilevel Database Management Systemsreceive(TM,Ti,op,x) : receives a lock or unlock request op from the transactionmanager TM on behalf of the transaction Ti on data item xsend(TM,Ti,msg) : send the message msg pertinent to transaction Tito the transaction manager TM for Ti)setLock(Ti,x,ltype) : sets the lock of type ltype on data item x,requested by transaction Tirelease(Ti,x) : release the lock held by Tj on data item xdelay(Ti) : puts the transaction Ti in a wait queue for a lockFigure 4 Functions Invoked by Trusted Lock ManagerHigh T1 : r1[x] r1[z]Mid T2 : r2[y] w2[x]Low T3 : w3[y] w3[z] c3Figure 5 An example showing why T1 must commit after T2
colored before-Tj . Tk inherits all the before-colors of Tj and this is propagated recursively to alltransactions Tm that are before-Tk. As before, if some transaction gets colored both before-Tn aswell as after-Tn, that transaction is aborted at this time. This includes Tj . Next the after colorof x is updated with the after colors of Tj and �nally the lock is granted.If there is a conicting lock, the transaction Tj is delayed.For read lock requests, the Lock Manager proceeds as in the case of write lock requests. However,the lock manager has to check only for conicting locks; there is no need for the Lock Managerto check for higher level transactions with low read locks on x. Also the set Read-after-color(x)is updated in this case.When the transaction Tj requests the Lock Manager to release a lock on x, the Lock Manager,after verifying that the request does not violate the security policy, releases the lock. Next itselects a transaction that is waiting for a lock on x to be granted and performs the lock requestoperation for that transaction.Note that along with the Trusted Lock Manager, there is another trusted component in thesystem which coordinates the lock requests by transactions in a strict 2PL manner and whichensures that when a transaction Tk tries to commit, if Tk is after-Ti for some Ti such that L(Ti)� L(Tk) or there is some Tj such that Tk is before-Tj and L(Tj) � L(Tk) then the commit ofTk is delayed till after Ti and Tj terminate. The reason this is done is to avoid possible covertchannels as exempli�ed by the history shown in �gure 5.The history in �gure 5 is not serializable as we have the cycle T1 ! T2 ! T3 ! T1. If we allowT1 to commit after executing r1[z] but before w2[x] is executed, then to prevent non-serializabilitywe will have to abort T2 when it executes w2[x]. However this opens up a covert channel fromlevel High to level Mid. To prevent this we cannot abort T2.

www.manaraa.com

Implementation Issues 11T1: r1[a] r1[d]T2: r2[b] r2[c]T3: w3[a] w3[b] c3T4: w4[c] w4[d] c4Figure 6 A history that is nonserializable. but MLS-serializable
To address this problem, our protocol does not allow T1 to commit so long as T2 is active andaborts transactions from higher security levels to lower security levels (in this order). Data itemz is already colored after-T2 by virtue of its being written by T3 (which is after-T2). Thus T1is colored after-T2 when T1 reads z. At this stage the commit of T1 is delayed till T2 commits.When w2[x] is executed T1 is colored before-T2. Since After-Set(T1) \ Before-Set(T1) 6= ;, weabort T1 and not T2.We next give an example, taken from (Sankarachary 1996), to show under what circumstancesthis protocol fails to yield serializable histories: Suppose that there are four transactions T1; : : : ;T4 such that L(T4) � L(T3), L(T3) � L(T1), L(T3) � L(T2), and L(T1) and L(T2) are incom-parable. Data items a and b are at the same level as L(T3) and data items c and d are at thesame level as L(T4).Consider now the history shown in �gure 6. We do not abort T1 when its read lock on dataitem a is broken by T3's write operation; neither do we abort T2 when its read lock on c isbroken by T4. Instead we postpone the abort of T1 or T2 till such point as a cycle is imminent inthe serialization graph, i.e., till the execution of r1[d] by T1. Although our algorithm detects theexistence of the cycle in the serialization graph, it still does not abort T1 because doing so willopen up a covert channel (T1 is aborted due to T2's read operations) between L(T1) and L(T2).Note however that this history is MLS-serializable.5 IMPLEMENTATION ISSUESOur protocol can be implemented within a Trusted Lock Manager. A simple implementation is asfollows: The Lock Manager maintains a table, called the data status table, the number of columnsin which equals the number of database items, and the number of rows equals the number ofactive transactions. Each cell in the table contains two bits and indicates the three colors of adata item with respect to transaction Ti, viz., colorless (00), read-after-Ti (10) and after-Ti (11).When a new transaction Tj arrives, a row corresponding to Tj is added to the table and all itsentries are initialized to 00. Whenever a data item x turns read-after-Tj, the cell in the jth-rowand xth-column is set to 10 and when x turns after-Tj , the cell is set to 11.The Lock Manager also maintains two sets associated with each transaction Tj - the Before-

www.manaraa.com

12 Secure Locking Protocols for Multilevel Database Management SystemsSet(Tj) and the After-Set(Tj). Initially After-Set(Tj) is empty and the transaction identi�er Tj isinserted in Before-Set(Tj). When transaction Tj becomes after-Ti, Ti is added to After-Set(Tj).When Tj becomes before-Tk for some transaction Tk, Tk is inserted in Before-Set(Tj).The data status table as well as each of the sets Before-Set(Tj) and After-Set(Tj) reside inthe trusted part of the lock manager and are not accessible to any transaction or other untrustedcomponents; hence these cannot be exploited as covert channels.As and when transactions add on new colors, the various transaction identi�ers are inserted inthe sets. Also the cells in the data status table are set from one bit pattern to another.The jth row in the data status table and the Before-Set(Tj) and After-Set(Tj) for a transactionTj can be garbage collected in the following cases: (1) If there is no active transaction Ti such thatTi is colored before-Tj or after-Tj . (2) If transaction Tj is aborted. These conditions guaranteethat the protocol does not miss out any dependency in which Tj played a part along with anycurrently active transaction.6 COMPARISON WITH RELATED WORKSWe now show how our protocol compares with the orange locking protocols given in (McDermott& Jajodia 1993).6.1 Optimistic Orange LockingIn the optimistic orange locking protocol (OOL), transactions are serialized at each level by twophase locking. A high transaction Tj sets read locks on low data items in order to read the data.If a low transaction Ti then tries to set a write lock on any of these data items, Ti's write lockrequest is immediately granted and Tj 's low read lock is converted to an orange lock. The hightransaction Tj is aborted if any of its low read locks is converted to an orange lock before Tjperforms the �rst unlock operation.OOL is more conservative than our protocol, as illustrated by the next example.Example 1 Consider the history shown in �gure 7. Transactions T1 and T3 are high transactions,while T2 is a low transaction; y and p are low data items, while x, z, q, l and t are high dataitems. The operations of the transactions and the order in which these are submitted are shownin the �gure. Under OOL, when T2 writes to p, the read lock by T1 on p is converted to anorange lock. Since this occurs before the �rst unlock operation of T1 (which can occur only afterr1[t]), OOL aborts the transaction T1, even though no cycle is formed in the serialization graph.With our protocol, T2 becomes after-T1 when it writes to p. The data item p also turns after-T1. T1 is colored before-T1 and before-T2. When T3 reads p, T3 becomes after-T1. T1 becomesbefore-T3. The data item l becomes after-T1 when T3 writes l. When T1 reads t, it does not readany after-T1 or after-T2 or after-T3 value and hence T1 is not aborted. 2

www.manaraa.com

Comparison with related works 13High: r1[y] r1[p] r1[x] w1[z] w1[q] r3[p] w3[l] c3 r1[t] c1Low: w2[p] c2Figure 7 A serializable history rejected by the optimistic orange locking protocol, but acceptedby our protocol
6.2 Conservative Orange LockingThe conservative orange locking protocol (COL) tries to improve upon OOL by not aborting thehigh transaction as soon as a conicting lock is requested by a low transaction; instead the orangelocks are used to identify the low transaction from which the high transaction can safely read.Briey, COL assumes that a high transaction Ti predeclares the set Ei of lower level data itemsthat it wants to read as well as the set Wi of data items that it wants to write. The execution ofa transaction Ti proceeds in two phases. In the �rst phase, Ti tries to read the set of lower leveldata items into a local workspace. It begins by marking as empty the local workspace reservedfor each element of Ei. While some element x is still marked as unread, Ti submits read-downoperations for those unread data items. If a read lock can be placed on x, it is read into the localworkspace. If no read lock can be placed, then Ti waits. When all the lower level data has beenread into the local workspace, Ti is said to reach its home-free point. If before Ti reaches its homefree point, a lower level transaction Tj acquires a write lock on a data item y already read byTi, the read lock by Ti on y is converted into an orange lock and y is marked as unread in Ti'slocal workspace. Ti is then placed on a queue Qj associated with Tj , so that Ti can read y fromTj , after the latter commits. When Ti reaches its home free point, either all the elements of Eihave been read locked and read into Ti's local workspace or orange locked and read into the localworkspace. After that, Ti follows two phase locking and reads and writes data items at its ownsecurity level.Example 2 In this example, there are three transactions: T1 and T3 of level high and T2 of levellow, as shown in �gure 8. Data items x, y and z are low level data items, while t is a high leveldata item. T1 reads x, y and z and writes t; T3 reads z and writes t; T2 writes to y and z. As inthe previous example, each transaction reaches its home free point after it has read all its lowerlevel data.This history is accepted by COL scheduler, although it has a cycle. T1 manages to read-lockall low data items and reach its home free point before T2 acquires write locks on data items yand z. T2 does not \override" any of the low read lock of T1 and, thus, none of the low-read locksof T1 gets converted to orange locks. The history, nontheless, has a cycle because COL fails toensure the two-phase nature of all transactions in the system.Note that this history is correctly rejected by our protocol as follows: When T2 writes y, T2becomes after-T1, y becomes after-T1; T1 is already before-T1 and becomes before-T2. T2 writesto z; thus z becomes an after-T1 value. T3 reads z; thus T3 becomes after-T1; T1 becomes before-T3. When T3 writes t, t becomes an after-T1 value. When T1 tries to acquire a write lock ont, T1 becomes after-T1; the Lock Manager detects that the intersection of Before-Set(T1) and

www.manaraa.com

14 Secure Locking Protocols for Multilevel Database Management SystemsHigh T1: r1[x] r1[y] r1[z] HFP1 w1[t] c1High T3: r3[z] HFP3 w3[t] c3Low T2: HFP2 w2[y] w2[z] c2HFPi = Home free point of transaction TiHigh: r1[x] r1[y] r1[z] HFP1 r3[z] HFP3 w3[t] c3 w1[t] c1Low: w2[y] w2[z] c2Figure 8 A nonserializable history accepted by conservative orange locking
After-Set(T1) is non-empty. Hence the protocol aborts T1, i.e., rejects the history shown in �gure8. 26.3 Reset Orange LockingThe Reset Orange Locking (ROL) protocol is very similar to COL. In ROL, when a low-read lockof a higher level transaction Ti is overwritten by a low level transaction Tj , the correspondinglow data item x is orange locked and marked unread in Ti's local workspace. However, unlike inthe COL protocol, Ti is not queued up in Tj 's queue Qj to read x from Qj . Instead Ti at somelater time asks the scheduler to re-acquire the low read lock. Ti's read request is queued waitingfor a chance to read according to the normal rules of two-phase locking. The read may have towait for other writes besides Tj 's. Further, if another low transaction Tk tries to write lock thedata item x after Ti has reacquired the low read lock, Tk overrides Ti's low read lock.Ti reaches its home free point when it has read-locked all low data and read them into its localworkspace or orange locked all low data and read them into its local workspace. Once Ti reachesthe home free point it releases the locks on the read-down data items and performs the rest of itsprocessing using conventional strict two-phase locking.It is clear that in the ROL protocol a high level transaction is not two phase; consequently, asin COL, there is no guarantee that histories produced by the ROL scheduler are serializable.7 CORRECTNESS OF THE ALGORITHMWe assume that the reader is familiar with serializability theory as explicated in (Bernsteinet al. 1987) and adopt the terminology and notation contained therein.Our protocol requires each transaction to lock a data item in an appropriate mode beforeaccessing it and eventually unlocks it before completing (well-formed property). This is expressedby the following property:

www.manaraa.com

Correctness of the Algorithm 15Property 1 Let oi[x] denote either a read or a write operation on data item x by transaction Ti,oli[x] denotes the locking operation (i.e. read or write lock) on x and ui[x] denote the correspondingunlock operation. Given a history H, if oi[x] 2 H, then both oli[x], ui[x] 2 H and oli[x] <H oi[x]<H ui[x].The locking used by a transaction is strict on all data items that are at the same level as thatof the transaction; i.e. a transaction Ti releases all its locks on data items at security level L(Ti)only after executing a commit or an abort. This property is expressed as follows:Property 2 For any pair of data items x and y accessed by a transaction Ti such that L(Ti) =L(x) = L(y), if oli[x] and ui[y] exists in H and either ci or ai exists in H, then either oli[x] <Hci <H ui[y] or oli[x] <H ai <H ui[y].The serialization graph SG(H) for history H is de�ned as a directed graph in which (1) Eachcommitted transaction in H is a node in SG(H), and (2) There is a directed edge Ti ! Tj inSG(H) whenever H contains an operation in Ti that precedes and conicts with an operation inTj .We distinguish between two di�erent kinds of edges in the serialization graph SG(H), viz., a!,and u!.De�nition 2 Let H be a history over fT1, : : : Ti, : : : Tj , : : : Tng.1. If there is an operation oi[x] 2 Ti that precedes and conicts with an operation oj [x] 2 Tj , andtransaction Ti is colored before-Tj , and transaction Tj is colored after-Ti, then the directededge Ti a! Tj is in SG(H).2. If there is an operation oi[x] 2 Ti that precedes and conicts with an operation oj [x] 2 Tj ,and Ti unlocks some data items before Tj locks them in history H, then the directed edge Tiu! Tj is in SG(H).Note that all edges Ti ! Tj in the serialization graph for a history H can be labeled eitherwith Ti a! Tj or Ti u! Tj .Lemma 1 Let T1 ! T2 ! : : : ! Tn be any path in SG(H) and let T1 be the last transaction tocommit among fT1; : : : ; Tng. Then there exists T 0 2 fT1, : : :, Tng such that T1 is before-T 0 andTn is after-T 0.Proof. Proof is by induction on n, the number of transactions in the path. First, we show thatthe Lemma is true for n=2. Let T1 ! T2 be in SG(H). Since T1 commits last, it can only bethe case that T1 had a read lock on some data item x that was broken by a write lock from T2;otherwise T1 would violate the strict 2PL protocol. Then by de�nition, T2 is colored after-T1and T1 is colored before-T1 and the edge is of type T1 a! T2. Hence T0 = T1 satis�es the lemma.Let us assume that the lemma holds for paths with n transactions. By the inductive hypothesis,given any path T1 ! : : : ! Tn on which T1 is the last transaction to commit, there exists T0 2fT1, : : :, Tng such that T1 is before-T0 and Tn is after-T0.

www.manaraa.com

16 Secure Locking Protocols for Multilevel Database Management SystemsConsider a path consisting of n+1 transactions, and in particular consider the type of the edgeTn ! Tn+1. Either Tn a! Tn+1 or Tn u! Tn+1.Let us �rst consider the case Tn a! Tn+1. Since Tn is after-T0 (by the inductive hypothesis),there must be at least one operation on[x] in Tn such that on[x] reads or writes an after-T0data item x; moreover after on[x] is executed, any data item read or written by Tn is coloredread-after-Tn or after-Tn respectively.Since Tn a! Tn+1 in SG(H), there must be at least a read operation rn[y] in Tn such that theread lock of Tn is broken by Tn+1, and Tn+1 and y turn after-Tn.Now there are two cases: (a) on[x] <H rn[y] or (b) rn[y] <H on[x]. We consider each of thesein turn.If case (a) is true, Tn turns after-T0 before Tn+1 turns after-Tn. Once Tn is colored after-T0any data item read by Tn is colored read-after-T0. When Tn+1 writes data item y, Tn+1 is coloredafter-Tn and after-T0 as well. Hence, the Lemma holds since T1 is before-T0 and Tn+1 is after-T0.If case (b) holds, Tn+1 turns after-Tn before Tn turns after-T0. When Tn turns after-T0 itpropagates recursively the color before-Tn to T0. And also to T1 since T1 was already coloredbefore-T0. Hence, the Lemma holds since T1 is before-Tn and Tn+1 is after-Tn.Let us next consider the case Tn u! Tn+1. Tn commits �rst, otherwise Tn would violate thestrict 2PL protocol . As there is a dependency between Tn and Tn+1, it must be the case thatthere is some on[x] that preceeds and conicts with some on+1[x]. If on[x] is rn[x], then data item xwill be colored read-after-T0. In this case on+1[x] has to be a wn+1[x] and Tn+1 becomes after-T0.If on[x] is a wn[x], on+1[x] can be either rn+1[x] or wn+1[x].In either case x is after-T0 and henceTn+1 is also after-T0. Hence, the Lemma holds since T1 is before-T0 and Tn+1 is after-T0.Theorem 1 Any history generated by our protocol is MLS-serializable.Proof. Assume SG(H) contains the cycle T1 ! T2 ! : : : ! Tn ! T1 in SG(H) such that thesecurity levels L(T1), : : :, L(Tn) are totally ordered. There must be some transaction Ti on thecycle at the security level L(Ti) such that L(Ti) dominates the security levels of all the othertransactions in the cycle. Then according to our protocol, Ti is the transaction to commit lastcompared with all the other transactions participating in the cycle. Consequently the cycle canbe re-written as: Ti ! : : : ! T1 ! : : : ! Tn ! : : : ! TiBy lemma 1, it follows that there exists T 0 2 fT1; : : : ; Tng such that Ti is colored before-T 0and Ti is colored after-T 0. But in such a case Ti should have been aborted by our protocol andthe cycle could not have resulted. This is a contradiction.Corollary 1 Suppose that the set S of security levels forms a total order. Then any historygenerated by our protocol is serializable.Proof. Follows immediately from Theorem 1.8 CONCLUSIONSIn this paper, we have described two lock based concurrency control algorithm for multilevelsecure transactions. Both protocol use single version data and are based on a method of \painting"

www.manaraa.com

Conclusions 17transactions and data items to prevent certain cycles. These algorithms are secure because theydo not require a lower level transaction to wait or abort because a higher level transaction isaccessing the same data in conicting mode and, moreover, the second protocol does not abort atransaction resulting from an action of a transaction at an incomparable level.ACKNOWLEDGEMENTThe work of Sushil Jajodia was partially supported by National Science Foundation under grantsIRI-9303416, IRI{9633541 and INT{9412507 and by National Security Agency under grantsMDA904{96{1{0103 and MDA904{96{1{0104. The work of Luigi V. Mancini was partially sup-ported by the Italian M.U.R.S.T. The work of Indrajit Ray was partially supported by NationalScience Foundation under grant IRI-9303416REFERENCESAmmann, P., Jaeckle, F. & Jajodia, S. (1995), `Concurrency Control in Secure Multi-LevelDatabases Via a Two-Snapshot Algorithm', Journal of Computer Security 3(3), 87{113.Ammann, P. & Jajodia, S. (1992), A Timestamp Ordering Algorithm for Secure, Single-VersionMultilevel Databases, in C. E. Landwehr, ed., `Database Security, V: Status and Prospects',North-Holland, Amsterham, pp. 191{202.Ammann, P. & Jajodia, S. (1994), Planer Lattice Security Structures for Multilevel ReplicatedDatabases, in T. F. Keefe & C. E. Landwehr, eds, `Database Security VII: Status andProspects', North-Holland, Amsterham, pp. 125{134.Ammann, P., Jajodia, S. & Frankl, P. (1996), `Globally Consistent Event Ordering In One-Directional Distributed Environments', IEEE Trans. on Parallel and Distributed Systems7(6), 665{670.Bernstein, P. A., Hadzilacos, V. & Goodman, N. (1987), Concurrency Control and Recovery inDatabase Systems, Addison-Wesley, Reading.Denning, D. E. (1982), Cryptography and Data Security, Addison-Wesley, Reading.Gray, J. & Reuter, A. (1993), Transaction Processing: Concept and Techniques, Morgan Kaufmann,San Mateo, CA.Jajodia, S. & Atluri, V. (1992), Alternative correctness criteria for concurrent execution of trans-actions in multilevel secure database systems, in `Proc. IEEE Symposium on Security andPrivacy', Oakland, CA, pp. 216{224.Jajodia, S. & Kogan, B. (1990), Transaction Processing in Multilevel Secure Databases usingReplicated Architecture, in `Proc. IEEE Symp. on Research in Security and Privacy', Oakland,CA, pp. 369{383.Kang, I. E. & Keefe, T. F. (1995), `Transaction Management for Multilevel Secure ReplicatedDatabases', Journal of Computer Security 3, 115{145.Keefe, T. F. & Tsai, W. T. (1990), Multiversion Concurrency Control for Multilevel SecureDatabase Systems, in `Proc. IEEE Symp. on Research in Security and Privacy', Oakland,California, pp. 369{383.Lamport, L. (1977), `Concurrent Reading and Writing', Comm. ACM 20(11), 806{811.

www.manaraa.com

18 Secure Locking Protocols for Multilevel Database Management SystemsMcDermott, J. & Jajodia, S. (1993), Orange Locking: Channel-free Database Concurrency ControlVia Locking, in B. Thuraisingham & C. Landwehr, eds, `Database Security, VI: Status andProspects', North-Holland, Amsterham, pp. 267{284.Reed, D. P. & Kanodia, R. K. (1979), `Synchronization with Eventcounts and Sequencers', Comm.ACM 22(5), 115{123.Sankarachary, K. B. (1996), Concurrency Control in Multilevel Secure Database ManagementSystem, based on Serialization Graph Testing, Master's thesis, Pennsylvania State University.Schaefer, M. (1974), Quasi-synchronization of Readers and Writers in a Secure Multi-level Envi-ronment, Technical Report TM-5407/003, System Development Corporation.BIOGRAPHYSushil Jajodia is Director of Center for Secure Information Systems and Professor of Infor-mation and Software Systems Engineering at the George Mason University, Fairfax, Virginia. Hejoined GMU after serving as the director of the Database and Expert Systems Program within theDivision of Information, Robotics, and Intelligent Systems at the National Science Foundation.Before that he was the head the Database and Distributed Systems Section in the ComputerScience and Systems Branch at the Naval Research Laboratory, Washington. He has also been avisiting professor at the University of Milan, Italy and at the Isaac Newton Institute for Mathe-matical Sciences, Cambridge University, England.Dr. Jajodia received his Ph.D. from the University of Oregon, Eugene. His research interestsinclude information security, temporal databases, and replicated databases. He has publishedmore nternational Journal of Cooperative Information Systems and as a contributing editor ofthe Computer & Communication Security Reviews. He serves on numerous conference programcommittees including 1996 IEEE Symposium on Research in Security and Privacy, 1996 ACMConference on Computer and Communications Security, 1996 European Symposium on Researchin Computer Security, 1996 IFIP International Information Security Conference, and 1997 VLDBConf. He is also active in the IEEE Computer Society and IFIP. He is a past chairman of theIEEE Computer Society Technical Committee on Data Engineering and the Magazine AdvisoryCommittee. He is a senior member of the IEEE Computer Society and a member of the Associationfor Computing Machinery.Luigi V. Mancini received the Laurea degree in Computer Science from the University of Pisa,Italy, in 1983, and the PhD degree in Computer Science from the University of Newcastle uponTyne, Great Britain, in 1989. From 1989 to 1992, he was an Assistant Professor at the Diparti-mento di Informatica of the University of Pisa. From 1992 to 1996 he was an Associate Professorof the Dipartimento di Informatica e Scienze dell'Informazione of the University of Genoa. Since1996 he has been an Associate Professor of the Dipartimento di Scienze dell'Informazione ofthe University "La Sapienza" of Rome. His research interests include distributed algorithms andsystems, transaction processing systems, and computer and information security.Indrajit Ray received his Bachelor of Engineering in Computer Science and Technology fromCalcutta University, India in 1988 and his Master of Engineering in Computer Science and Engi-neering from Jadavpur University, India in 1991. Currently he is a Ph.D. student at George MasonUniversity in Fairfax, VA. His research interests include distributed databases, transaction pro-cessing and computer security.

